Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CANDIDATE
NAME

CENTRE NUMBER

CHEMISTRY

Paper 3 Advanced Practical Skills 1
May/June 2016

Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 14 and 15.
A copy of the Periodic Table is printed on page 16.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
Total	

This document consists of $\mathbf{1 3}$ printed pages and $\mathbf{3}$ blank pages.

1 In this experiment you will determine the concentration of a solution of sulfuric acid by titration.
FA 1 is sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
FA 2 is aqueous sodium hydroxide, containing 4.20 g NaOH dissolved in $1.00 \mathrm{dm}^{3}$ of water. thymolphthalein indicator

(a) Method

Dilution of FA 1

- Pipette 10.0 cm 3 of FA 1 into the $250 \mathrm{~cm}^{3}$ volumetric flask.
- Make the solution up to the mark using distilled water.
- Shake the flask thoroughly.
- This diluted solution of sulfuric acid is FA 3. Label the flask FA 3.

Titration

- Fill the burette with FA 2.
- Pipette 25.0 cm ${ }^{3}$ of FA 3 into a conical flask.
- Add a few drops of thymolphthalein indicator.
- Perform a rough titration and record your burette readings in the space below. The end point is reached when the solution turns a permanent pale blue colour.

The rough titre is \qquad cm^{3}.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of FA 2 added in each accurate titration.

Keep solution FA 1 for use in Questions 2 and 3.

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your accurate titration results, obtain a suitable value for the volume of FA 2 to be used in your calculations.
Show clearly how you obtained this value.
$25.0 \mathrm{~cm}^{3}$ of FA 3 required \qquad cm^{3} of FA 2. [1]

(c) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Calculate the number of moles of sodium hydroxide present in the volume of FA 2 calculated in (b).
Use the data in the Periodic Table on page 16.
moles of $\mathrm{NaOH}=$ \qquad mol
(ii) Complete the equation for the reaction of sulfuric acid with sodium hydroxide. State symbols are required.
\qquad $+$ \qquad
\qquad $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+$ \qquad
(iii) Use your answers to (i) and (ii) to calculate the number of moles of sulfuric acid used in each titration.
moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ \qquad mol
(iv) Calculate the concentration, in moldm ${ }^{-3}$, of sulfuric acid in FA 3.

$$
\text { concentration of } \mathrm{H}_{2} \mathrm{SO}_{4} \text { in FA } 3=
$$

\qquad moldm^{-3}
(v) Calculate the concentration, in moldm ${ }^{-3}$, of sulfuric acid in FA 1.
concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in FA $1=$ \qquad moldm^{-3}

2 In this experiment you will determine the enthalpy change, ΔH, for the decomposition of magnesium carbonate to magnesium oxide.

$$
\mathrm{MgCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MgO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

In order to do this, you will determine the enthalpy changes for the reactions of magnesium carbonate and magnesium oxide with sulfuric acid. Excess of the two magnesium compounds will be used in each experiment.

Then you will use Hess' Law to calculate the enthalpy change for the reaction above.
FA 1 is sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
FA 4 is magnesium carbonate, MgCO_{3}.
FA 5 is magnesium oxide, MgO .
(a) Determination of the enthalpy change for the reaction of magnesium carbonate, FA 4, with sulfuric acid, FA 1

(i) Method

- \quad Support the plastic cup inside the $250 \mathrm{~cm}^{3}$ beaker.
- Use a measuring cylinder to transfer $25 \mathrm{~cm}^{3}$ of FA 1 into the plastic cup.
- Measure and record the initial temperature of the FA 1 in the space below.
- Add all the FA 4 from the container to the FA 1 in the plastic cup.
- Stir constantly until the maximum temperature is reached.
- Measure and record the maximum temperature of the contents of the cup.
- Rinse out the plastic cup and shake to dry for use in (b).
- Calculate and record the temperature rise.

Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(ii) Calculate the energy produced during this reaction.
[Assume that 4.2 J are needed to raise the temperature of $1.0 \mathrm{~cm}^{3}$ of solution by $1.0^{\circ} \mathrm{C}$.]
\qquad
energy produced = J
(iii) Use your answer to $\mathbf{1 (c)}(\mathbf{v})$ to calculate the number of moles of sulfuric acid in $25 \mathrm{~cm}^{3}$ of FA 1.
(If you were unable to calculate the concentration of sulfuric acid in FA 1, assume that it is $1.27 \mathrm{~mol} \mathrm{dm}^{-3}$. This is not the true value.)
moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ \qquad mol
(iv) Calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reaction below.

$$
\mathrm{MgCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

\qquad
(b) Determination of the enthalpy change for the reaction of magnesium oxide, FA 5, with sulfuric acid, FA 1

(i) Method

- Use the measuring cylinder to transfer approximately $40 \mathrm{~cm}^{3}$ of FA $\mathbf{1}$ into the $\mathbf{1 0 0} \mathbf{c m}^{\mathbf{3}}$ beaker.
- Place the beaker on a tripod and gauze.
- Heat FA 1 in the beaker until the temperature is between $40^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$.
- Support the plastic cup in the $250 \mathrm{~cm}^{\mathbf{3}}$ beaker.
- Use the measuring cylinder to transfer $25 \mathrm{~cm}^{3}$ of hot FA 1 into the plastic cup. CARE.
- Measure and record, in the space below, the initial temperature of FA 1 in the plastic cup.
- Immediately, add all the FA 5 from the container to the FA 1 in the plastic cup.
- Stir constantly until the maximum temperature is reached.
- Measure and record the maximum temperature.
- Calculate and record the temperature rise.

Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(ii) Calculate the energy produced during this reaction.
[Assume that 4.2 J are needed to raise the temperature of $1.0 \mathrm{~cm}^{3}$ of solution by $1.0^{\circ} \mathrm{C}$.]
energy produced $=$ \qquad
(iii) Use your answer to (a)(iii) to calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reaction below.

$$
\mathrm{MgO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

\qquad
(c) Use your values for the enthalpy changes calculated in (a)(iv) and (b)(iii) to calculate the enthalpy change for the reaction below.

Show clearly how you obtained your answer by drawing a Hess' Law energy cycle.
(If you were unable to calculate the enthalpy changes, assume that the value of the enthalpy change in (a)(iv) is $-58.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the value in (b)(iii) is $-140.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Note: these are not the correct values.)

$$
\mathrm{MgCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MgO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

enthalpy change =
\qquad
(d) (i) Calculate the maximum percentage error in the temperature rise in (b)(i).

> percentage error = \%
(ii) The magnesium oxide, FA 5, was weighed with a balance measuring to one decimal place. A student suggested that the accuracy of the experiment in (b)(i) would be improved by weighing FA 5 using a balance measuring to two decimal places.
State and explain whether or not the student is correct.
\qquad
\qquad
\qquad

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.
(a) (i) FA 6 is a salt containing one cation and one anion from those listed on pages 14 and 15 . Transfer a small spatula measure of FA 6 into a hard-glass test-tube. Heat gently at first, then heat strongly until no further change occurs.

Record all your observations below.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Dissolve the remainder of FA 6 in an approximate depth of 5 cm of distilled water in a boiling tube for use in the following tests. Record your observations in the table below.

test	
To a 1 cm depth of the solution of FA 6 in a test-tube, add an equal volume of FA 1, aqueous sulfuric acid.	
To a 1 cm depth of the solution of FA 6 in a test-tube, add aqueous ammonia.	
To a 1 cm depth of the solution of FA 6 in a boiling tube, add aqueous sodium hydroxide, then	

(iii) Give the chemical formula of FA 6.
\qquad
Give the ionic equation for the reaction of FA 6 with cold sodium hydroxide. Include state symbols.
\qquad
(b) (i) FA 7 is a solution containing one cation and one anion from the list on pages 14 and 15 .

Carry out the following tests and record your observations in the table below.

test	
To a 1 cm depth of FA 7 in a test-tube, add aqueous sodium hydroxide.	
To a 1 cm depth of FA 7 in a test-tube, add aqueous ammonia.	
To a 1 cm depth of FA 7 in a test-tube, add a few drops of acidified potassium manganate(VII), followed by a few drops of aqueous starch.	

(ii) Identify FA 7.

FA 7 is \qquad
(iii) Carry out one further test of your choice to confirm the identity of the anion in FA 7.
reagent(s) used \qquad
observation(s) \qquad
\qquad

BLANK PAGE

BLANK PAGE

BLANK PAGE

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{A} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\mathrm{Ca}^{2+}(\mathrm{aq})$]	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	"pops" with a lighted splint
oxygen, O_{2}	relights a glowing splint

The Periodic Table of Elements

$\therefore 工 ⿻ コ 一 𠃌 ⿻ 上 丨$	®．
	8 ¢ 4 ¢
	$\infty<$
	の玄部
す O－	\＆¢ ¢ 咅
	д ح
	$\% \frac{0}{2}$

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cie．org．uk after the live examination series．

